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Abstract 

This paper conszders sortang a n  SIMD hypercube 
nrultaprocessors En the presence o f  node fazlures. The 
proposed algorzthm correctly sorts u p  t o  2n = N keys 
21)  a faulty SIMD hyperrube of dtmt nsaon n containzng 
u p  to n - 1 faulty n0dt.s The proposed fault-tolerant 
abgonfhm employs radix sort. W P  u s e  a pazr of j l ood  
dcmensaons whach help+ t o  route daia around the faulty 
prsocessors durtng ihe niovement of data. If all ihP key 
mtlues to  be sorted belong l o  thr runge 0 to hf - 1 ,  
horting can be accomplishrd efiriently an O(log hf* log  
,I) + O(iog2h)  tzrne. 

Index Terms SIMD, Fault-tolerant, Parallel 
Sorting, Radix Sort 

1 Introduction 

The hypercube architecture has received much at- 
ttntion in the literature [l,  2, 31. The nCUBE/2 from 
Ncube, iPSC/2 and iPSC/860 froilri In td  and CM-2 
fmm Thinking Machine are some of the commercd 
rILachines based ori ii hypercube structure 14, 51. ‘T’he 
higger the size of tha. syst,em, the higher IS the proha- 
hility that some processors and/or links rnay fail We- 
iiig able to operata= in the presence’ of faults, t h r ~ e -  
fore, is of paramount importance Sorting is o11c of 
t lie most tmsic  algorithms in coinpiiter science Ap- 
plications of sorting have been Iiskd in [RI. To the 
libst of our knowledgf , t,here is I IO practical farilt- 
ttllerant sorting algoritlim for SlMD hypixubes, and 
the best known MIMD reliable sortsing algorithm tol- 
errttes just one nod(,/ link failure t i 1  an n-cubr, and 
hits a O(log2N) corrrpltbxity [7]. I n  181, Leighton aria- 
1 y  zes the fault-tolerance‘ properties of several b0undt.d- 
dc gree networks that are commonly used for parallel 
computation In the proposed algorithm we have fo- 
cused on SIMD hyperciibcs with ar f i z i i t y  control 191 
-_____--- 
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Processors belonging to SIMD machines of this type 
can participate in a computation step or abstain from 
it based on a local condition Our algorithin tolerates 
upto n - 1 faults in an n-cube In our faiilt-tolerant 
sorting algorithm, we have employtad radix w r t ,  which 
has been implemented with high performarrce for data 
sets with unknown (non-uniform) distributions [lo]. 
Parallel sorting in hypercubes involves efficient data 
movement arnong processors. In the event of a fail- 
ure of a processing elemtant, the required i iiformation 
IS not sent to its ricighbor In our fault-tolerant algo- 
rithm, we ensure that the neighboring no le receives 
proper data by performing a so-called flood opera- 
tion After finding out two valid flood dimtmions, we 
rearrange the ordcr of the diniensioris as f1)llows We 
assign dimension numbers 0 and 1 1,o the two selected 
flood dimensions ’The r tw”ir ig  dimensicins may be 
assigned numbers from 2 to n-1 in any ordtr We refer 
to the newly-numbered dimerisions as logiral dimen- 
sions. After the execution of the sorting algorithm, 
the sorted key values reside on PE’s whose indices are 
from 0 to N - 1 based on the logical dimerisions 

2 The Hypercube Model - Notations 
and Definitions 

We refer to a processing element as a {’E. An n- 
dimension hypercube SI MD computer corisists of N 
= 271 PE’s, each of which has a local mernory asso- 
ciated with it. A PE, together with its triemory. is 
referred to as a node. F;ach node is corrnected di- 
rectly to n other nodes by virtue of links. i.e., each 
node has n neighbors .  Two nodes lying on oppo- 
site ends of a link have their addresses tliffering in 
exactly one bit. We refer to the it,h PF; as PE(i). 
We specify it node PE(?) by its binary i,epresenta- 
tion, i n - l i n - 2  ... io. We define i (Q)  as the niiinber rep- 
resented by i n - l i n -2  . . . ~ ~ + l z , ~ ~ - l . . . i * ,  where i ,  is f,he 
complement of i,. Hence, P E ( i )  is directly connected 
to PE(&,)). 

. . .  
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The fault model that  we have assumed for the faulty 
hypercube is m follows. There might be up to  n - 1 
randomly located faulty nodes in the hypercube. All 
failures are fail-stop; that is, once failure occurs in a 
PE, it does not communicate with its neighbors in any 
way; it is totally disabled. In addition, it is assumed 
that a diagnostic process has been successfully exe- 
cuted so that information concerning the location of 
faults may be used when reconfiguring the network in 
order to  circumvent t,hem. 

We define a pseudo f a u l t y  node as follows. SIMD 
multiprocessors carry out data  movements along one 
dimension at a time. A faulty P E  fails to send data to  
its neighbor. The neighboring PE now contains spuri- 
ous information, and is called a pstwdo faulty node f 
denotes the number of faulty PE’s in the hypercube. 
‘I he maximum number of faulty PE’s that, the pro- 
posed faul-tolerant algorithm tolerates is (n  - I ) ?  so 

The notations employed in the dgorithms are sim- 
I I ( n  - 1). 

ilar to those in [ll]. 

3 A Sketch of the Algorithm 

The input to  the proposed algorithm is the key val- 
ues stored in the V registers of the PE’s. By using the 
most-significant-bit (MSB) radix sort, log A4 steps are 
needed to  complete the sorting process. Each step, 
corresponding to one bit of the values. takes O(log N )  
time. First, values with the MSR equal to  0 ( 1 )  arr 
ranked, and concentrated into the front (rear) seg- 
ment of the set of E’E‘s. As a result, the set of PE’s 
is partitioned into regions. At the end of each of the 
log M steps, each region is further partitioned into at 
most two subregions. Each region has an st ( e n )  flag 
t o  indicate whether it is the starting (ending) PE of a 
rcgion. Before executing the same procedure for siib- 
sequent bits, the startinglending flag is set for each 
region starting/ending PE. Next ~ the index/“ of 
the region starting/ending PE is broadcast to all PE’s 
in that region. This stvp is necessary for the so-called 
rcrnk adjustment  in different regicms Each of thrse 
stops is performed on the hypercube- 111 O(1og N )  t,irne, 
which causes the main sorting algorithm to be of O(log 
h1 *log A‘) time co m pkxi ty  . 

An example of how our proposed fault-tolerant al- 
gorithm operates is illustrated in Figure l .  Wc have 
a 3-cube having two faulty nodes, PEl(2) and PE(2). 
The key values to be sorted are in the I’ regist,ers 
of the PE’s. We assiimr that M = 3. First, we 
rank the values with the MSB equal to 0 ( 1  j ,  and 
concentrate them at  t,he rear (front) of the set of 

lcp I ’ MSB (bl 

tap2 b u l  

m p 3  h u O  

Figure 1: An example of the fault-tolerant, algorit.hm 
for a 3-cube 

PE’s. In our algorithm, this step is performed by 
the R A N K  procedure, the BROADCASl procedure 
which broadcasts information to each record within a 
region about its final destination within that region, 
and the CONCENTRATE procedure, which actu- 
ally moves records to their final destinations within 
the region Then we repeat the process for bit 1 and 
bit, 0 of the key values. At the end of each step, two 
new regions are created, as illustrated by I he new re- 
gion boundaries in Figure 1. New boundaries are rec- 
ognized by the SET-FLAGS procedure. 4 t  the c d  
of step three, we see that the key values have been 
sorted. 

4 Flood Dimensions 

A flood dimension (hereafter referred to as F D )  
is a dimension along which messages are t,ransmitted 
from fault-free nodes to pseudo-faulty nodes in order 
for all pseudo-faulty nodes to receive the required in- 
forniation. Having one flood dimension, however. is 
not always enough. This is becaust’, prior to  flood- 
ing, there is a t  least one pair of nodes along the flood 
dimension in which the trarismitt,ing node is a faulty 
node and the receiving node is a pseudo-l’aulty one. 
This scenario is illustrated by the following example. 
We denote faulty nodes hy ‘x’ and pseudo-faulty ones 
by ‘y’. We wish to implement the algorithm given in 
Figure 2 on a 4-cube. Algorit,hm First-example is a 
small part of the run$ algorithm we describe. later, and 
serves to  illustrate the inefficacy of having one flood 
dimension. The initial values of S(i) are as indkated 
in Figure 3. Dimension 0 is the flood diniension for 
the example. The steps constituting the execution of 
algorithm First-example are shown in Figure 3. We 
observe that although flooding has been successful at 
each intermediate step, we finally reach ;i situation 
where there are two pairs of nodes, each of which con- 
sists of a faulty node and a pseudo-faulty node. It. is 
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Algorithm First-example 
/* n is the dimension of the hypercutle */ 

begin 
1 T ( i )  = 1 

2 f o r q = O t o n - 1 d o  
3 T i ( q ) )  t S( i )  
4 S { i )  = S ( i )  + T(a) 

endfor 
end 

Figurr 3: Flood Operation 

clear that one more flood step along the flood dimen- 
sion will not help the pseudo-faulty nodes receive the 
correct data. This is called an x-y condition. 

Our example shows that having one flood dinien- 
sion is insufficient in the worst case. We must. there- 
fore, have at  least a pair of FD’s. ‘The following theo- 
rt*m proves that having two FD’s is sufficient in order 
i o  carry out flooding. 

Theorem 1. I n  an n-dzmensicmal hypercube with 
at most (n-1) faults, it as always posszble t o  find U pair 
of FDs such that thwe is never an. x-y condition along 
hoth the dimensions si,mulianeoushy. 
Proof: Please refer t,o [ti]. 

4.1 Finding an E‘D-pair 

One pair of FDs is sufficient for our algorithm to 
mork. In this subsection, we prmide aii efficient al- 
gorithm to find an FD pair by elinmating all pairs of 
dimensions that can not possibly }le FD-pairs I n  the 
uorst case, whenever t NO faulty PE’s are located ,it i t  

distance of two (links) from each other, the two dimen- 
sions of the 2-cube constituted hy these faulty nodes 
nray not be an EI)-p.tir In addition, if two faulty 
PE’s are neighbors alcrng a dimtmsion, then that di- 
niension can not obviously be used as a flood dimen- 

Algorithm Find-FD-pair 
/ *  n is the dimension of the hypercube */ 
begin 

1 f o r j = O t o f - 1 d o  
2 f o r k = D t o f - l d o  
3 if dis tance(FAULTb],FAUI,T[k]) = = 1 
4 discard(dimension 1 

6 discard(dimension 1 ,  dimension2) 
5 if di5t.nce(I.nU~Tlij,FAuLT[kl) ==2 

7 endfor 
end 

Figure 4: Algorithm for finding an F1)-pair 

Algorithm Dimension-seq 
begin 

1 for a = 0 to 2n - 1 
2 s e q [ a ]  = 0 
3 
4 
5 
t, fork=  1 t n do 

h endfor 
$ 8  endfor 
10 endfor 

if 1%2 = 1 then s e q [ i ]  = [1/21 
if a%2 = 0 and a 2 2 then 

for 5 = F[O]  to F[f - 11 do 

if = 1 then s e q [ 2 k  - 11 = 1 

end 

Figure 5: 
quence 

Algorithm for finding the diriiension se- 

sion. The algorithm to find an 1‘D-pair is given in 
Figure 4. FAULT[O]. FAULT[l], ..., FAUL’I’[f - I] rep- 
resent, the addresses of the faulty PE’s. Thth procedure 
distance calculates the distance, in terms of number 
of links, between the two PE’s in its argurnent. Lines 
3 and 5 take O(n) time because node addresses arc of 
n bits. If it is performed in parallel on 11 nodes, the 
procedure takes O(n2) ,  or O(log2N). time to execute. 

4.2 Determining the sequence of dimen- 
sions for flooding 

We perform the flood operation after mch step of 
the fault-free algorithm. Flooding may t8ake place 
aloiig either of the two FDs belonging t,o the FD pair. 
Let, us refer to thr  two E’Ds as dimensioris 0 and 1. 
Usually, we flood along dimension 0 each time, unless 
we encounter an x-y condition along this dimension 
(in which case wv choose dimension 1 to Ylood). We 
predetermine the dimension seqt1t:nc.c for flooding to 
take place. 

During the execiitiori of the fault-free sorting algo- 
rithm , the dimension sequence for transferring infor- 
mation l)et,ween neighbors is 0, 1, 2 ,  3, 4, ..., 12-1. In 
the fault-tolerant algorit,hm, the diniensioti sequence, 
inchiding flood dimensions, would be 0, 1, *, 2, *, 3, *, 
4, * )  5, *, .... ‘rhr *’s represent the flood liimensions, 
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Figure 6: Example for determining a dimension se- 
(1 iience 

aiid equal either 0 or 1 The procedure Dimension-seq 
(I’igure 5) determines the dimension sequence The 
a i ray  f a u l t  (maintained i n  the PE:) records informa- 
tion about faulty PE’!, ,fault[i] == l(0) means that 
I ’ E ( i )  is faulty (fault-free) The register F contains 
a list of all fault-free PE’s such that their neiglihors 
along dimension 0 are fnulty The rvgister sr~q contains 
the dimension s e q i i ~ n c ~ ~  after the execution of the pro- 
ct dure The way pro( edure Dirncnsion-seq operates 
stiould be clear from the example shown iri Figurv 6 
There are three faulty PE’s in the 4-cube. Line 4 of 
tlie procedure Dimension-seq coiers the O-th t h e n -  
sirm neighbors of faulty PE’s, that is, nodes 3,  5 nnd 
1:’ Consider node 3 7 he neighbor, along dimensions 
I 2 and 3 are indicated in Figurf, 6 Thc neighbor of 
node 3 along dinlension 3 15 fault), which will rcsull in 
ari x-y condition after (bxecxtion along dimension 3 of 
tl e fault-tolerant algonthni (PE 11 IS “x” PE 3 will be 
‘‘J ” )  Hence, the flood (Iimension t c  he employed (tfter 
dimension 3 of t h t  fault-tolerant algorithm IS ctiinm- 
sion 1 After considering PE’s 5 and 12 in a sirnilar 
fashion, the dimcmion sequence is iound to be 0 ,  1 0 
2 0 3 , l  

5 Fault-tolerant Algorithm 

The sorting algorithm is composed of four proce- 
dures: RANK, BROADCAST, CONCENTRATE and 
SF;T-FLAGS. For a detailed treatment, of the proofs of 
correctness and examples of these algorithms, please 
sw: [6]. 

5.1 RANK 

The rank of a P E  is defined as thc number of PE’s 
having an active record preceding i t .  An active record 
is defined as a record that satisfies a certain condition 
s11t.h as, for example, having a particular bit of the 
value equal to  0 or 1. p indicattbs bit, p of the value 
of the record, and 1 is equal to  0 or 1. Hence, an 
active record is a record with V ( i ) ,  -= t .  ‘The ranking 
algorithm is given in Figure 7. Register A contains 
information regarding whtsther a given PE is active 

procedure RANK(p, t ,  u o r R )  
I R(a) = O , F ( r )  = O,T(t)  = n u l l  
3 S(8) = I iV( i ) ,  = 1 )  
3 S ( t )  = O(V(l), # t )  

5 T t ( q ) i  - S ( ~ I  begin 
4 

6 
7 
c; 
53 
10 
11  endif 
12 
13 
14 

15  
16 

17 

18 endif 
19 endfor 

for q = seq[0 ]  to seq[Zn  - 21 do 

F l r )  = T ( l ) ( J  = 0 )  
if O-th or odd-numbered step/* fault-free s ep */ 
R(a) = R ( E )  + T ( t ) ( t q  = 1 & T(z )  # null )  
S(a) = S ( t )  + T( t ) (T(a )  # null )  
S(a) = null R ( r )  = ~ ~ i i l l ( T ( ~ )  = nul l )  

if even numbered step & greater t h a n  0 /* , h o d  s t e p  */ 
S(a)  - S ( t ( q ) ) ( S ( ~ )  = nu l l )  
R(a) - R ( r t q ) ) .  R(1)  = R(z)  - A(%) ( a q  = 0 & q = 0 & 

R(a) - ( R ( I ( ~ ) ) + A ( L ( ~ ) ) )  ( z q  = 1 & q = 0 b . ! ( a )  = null) 
R(a) - R ( % ( q J ) ,  R(a1 = R ( z )  - A l l )  - A ( L  + I) ( t q  = 0 k 

H ( t )  +- R(r ( ‘ ) ) ,  H(zi = R ( Z ) + A ( ~ ( ~ ) ) + A ( I ” ) + ~ ) ( Z ~  = 1 

S i t )  = null) 

q = 1 81 ! ( a )  = nu l l )  

& q = 1 Rr S(t) = null) 

end 

Figure 7: Fault-tolerant RANK algorithm 

or not. A[i]  = l(0) implies that the PE is active(not 
active). F is the register that indicates the preseiice 
of a faulty neighbor along dimension 0. 1 9  ( i )  = null 
means that i ’ s  neighbor along dimerision 0. is faulty. 
Register S(i) has a value of 1 if P E ( ? )  is active, 0 if it 
is not active, and null if it, is pseudo-fault!,. Register 
R contains the rank of each PE. 

An example of the RANK algorithm is given in Fig- 
ure 8. The register seg,  in this case, contains the di- 
mension sequence 0, l l  0, 2, 0, 3, 1. In ot.her words, 
we employ FI.) 0 tJo flood after executing thc algorithm 
along dimensions 1 and 2, and FD 1 after dimension 
3 .  The register R,  as indicated at the bottom row of 
the figure, contains the correct rank in each fault-free 
PE. 

5.2 BROADCAST 

A region is defined as a maximal set of consecutive 
PE’s having the same value in the pth bit of V ( i ) ,  
where O 5 p 5 R. Broadcasting is an operation that 
distributes the data in the region st,arting/ending PE 
tjo all the PE’s belonging to  that region. a = 0(1) 
implies the selection of the region starting(e1iding) PE, 
while b = 0(1) indicates that it is the iridex(rank) 
which must be broadcast. st(i) = 1 implies t,ha.t P E ( i )  
is the starting PE of a region, while en(i) ::= 1 means 
that PE( i )  is the ending PE of a region. 

The procedure t,o perform the broadcast. operation 
is given in Figure 9. Registers C arid D denote the 
transmitting and the result registers, respectively. Af- 
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Figure 8: 1:xample of R A N K  

ter the broadcast operation, D(7) contains the value 
of the index/rank of the starting/mding PE of the re- 
gion in which PE(1') lics. We visualize the hypercube 
as an array of PE's indt.xed from left to right, starting 
with index 0 and ending with N-1 The D register o f  a 
non-source PE changes its value only when it wceives 
dnta from its left side for the first time The (7 rcg- 
isher of a non-source PE, on the other hand, changes 
i t r  value under either of the following two conditions 
( ( I )  when it has null data and rwviws data from its 
lrft side, or ( b )  when it receives any data from its right, 
side. 

An example of th+. BROADCAST algorithm is 
given in Figure 10 A5 a i t h  the ranking procedure, 
tlie array seq holds the predetermined sequcnce of di- 
mensions, for both regular operat 1011 and flooding In 
t h e  example, we consider a 4-cuhe with a = 0 , b  = 0. 
lri the context of our fault-free algorithm, the 'stdrt- 
irig PE' of a region nieans the first fault-free PE, of 
tllat, region. As usual, Hooding is not performed after 
(I = 0, but is performed after higher values of q In the 
piid, we observe that fault-free P E  ' 8  have the proper 
f P values. 

Figure 9: Fault-tolerant BROADCAST algorithm 
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Figure 11: Example of (:ONCENTRATE for a 4-cube 

Figure 12: Fault-tolerant CONCENTRATE algorithm 

17 
18 endif 
19 endfor 

r(i) = S(i) ( r ’ ( i )  = null & i,+l = i , )  

end 

Figure 13: Fault-tolerant SET-FLAGS algorithm 

5.4 SET-FLAGS 

This procedure sets the s t ( en )  flag of a PE; if i t  is the 
starting(ending) PE of a region. SET-FLAGS simply 
creates new region boundaries: every region is divided 
into two sub-regions now, one containing the 0’s and 
the other, 1’s. The algorithm is given in Figure 13. 

5.3 CONCENTRATE 

5.5 The complete SORT procedure 

This procedure (see Figure 12) deals with what is 
known as the adjusted rank of a PE, which we define 
as follows [ l l ] :  adjusted rank = absolute rank + index 
of the region-starting/ending PE - absolute rank of 
the. region-starting/ending PE. The CONCENTRATE 
procedure concentrates all active records (records with 
bit p of the data being equal to 0 (1)) in the front (rear) 
of their respective regions. The purpose of this proce- 
diire should be clear from the example shown in Fig- 
urc’ 11. In fact, the adjusted rank of a, record is also its 
final destination. The input to the algorithm consiqts 
of the key values of active records, and their adjusted 
rartks. v(i) and R(i)  represent tht. key value and the 
aci.iusted rank of an active record, respectively. They 
arc. the transmitting registers of PE(i). The “primed” 
registers are employed as temporary storage in order 
to avoid conflicts. 

The complete SORT procedure is given in Fig- 
ure 14, and is similar to the fault-free SORT procedure 
in [ll]. Each iteration of the complete algorithm (lines 
4 to 17, included) accomplishes radix sort along one 
bit of the key values on the PE’s, and takes O(1og N )  
time. The main sorting algorithm, thus, is olcomplex- 
ity O(1og M+log N ) .  Finding an FD pair, a one-time 
procedure, takes O(log2h:) time to complete. There- 
fore, the complete algorithm may be accomplished in 
OQog M*Iog N )  + O(log2N) time. 

Line 2 sets the st and the en flags for the initial 
region which encompasses all the PE’s. Lines 4-7 (8- 
11) compute the adjusted rank for each key value with 
V( i ) ,  = 0 ( V ( i ) ,  = 1). After the CONCENTRATE 
operation, the flag-setting operation is performed for 
the newly-created regions in line 17. 
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procedure SORT 
1 s t ( ; )  = en(i) = 0 
2 ~ t ( 0 )  = en(N - 1) = 1 

3 
4 RANWp,O,Ro) 
5 

6 

begin 
for p = log M - 1 t o  0 do 

BROADCAST( O , O , S )  /* region-bt arl,ing indices*/ 

BROADCAST( 0 1 , H ‘ )  /* region-starting ranks*/ 
7 
8 R A N K ( P , ~ , A I  1 
9 

Ro(a) = f k 1 ( 8 )  f S(I)  - R ’ ( t )  (v(6 t P  = 0) /* adj rank */ 
BROADCAST1 1 0 , E )  / *  region-en ling indices*/ 

10 
11 
12 VI (1 I = Vo(a) nvlY 
13 
14 
15 
16 
17 
18 endfor 

BROADCAST( 1 1,R’ ) / *  region-ending rank3 */ 
R I ( % )  = X I ( Z )  -t E ( % )  - R I ( * )  ( V i ,  

Vt(z) = V ( % )  ( G ‘ ( Z ) ~  = t 
CONCENTRATE(\’,,, R o )  /* to cltstination * /  
COiVCENTRATE(I.i, R I )  /* to  clcstiriation */ 
V ( e )  = V t ( t )  ( L ‘ ( z ) ,  = t I 
SET-FLAGS /* for starting/endrriF PE’s * /  

= 1) / *  adj  rank * /  

end 

Figure 14: The complete SORI’ procedure 

6 CONCLUSION 

In this paper. we dweloped a iiew fault-tolerant 
sorting algorithm that sorts upto 2” = IV keys LII a 
faiilty SIMD hypercube We introduced the concept of 
f lood  dimensions in order to routc data around faulty 
processors. Our algorithm can be extended to r u n  cm 
hl FMD hypercubw k’ut,iire research direct ions include 
extending the algorithni to sort mow than N kels, arid 
rwlucing the number cd flood sttys, if not thta tirne 
complexity, needed to ensure the correct execution of 
thc sorting algorithni. 
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